TrendCalculus

A data science for studying trends.
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Trends?”!

Data science seems so focused on the micro scale:
deeper granularity

higher frequency...




Trends?”!

My focus is broad patterns; big flock behaviours, and my
objective is long range predictions.

Trends are a natural way to think, explain, and forecast.
Yet we lack tools to understand Trends, scientifically.

TrendCalculus is my unfinished research to that end.




What's a trend?

‘A Trend is defined by a shift in behaviour or mentality that
influences a significant amount of people.” - Salomé Areias

"A Trend is the slow variation over a longer period of time,
usually several years, generally associated with the structural
causes dffecting the phenomenon being measured.” - Eurostat
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400+ years of trend discussion

What do you see?

Perhaps a shift in behaviour or mentality?
Maybe a drift in language use?
How do we quantify and study the trend?
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400+ years of trend discussion

What might cause Trend as a topic to be losing popularity?
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400+ years of trend discussion

What might cause Trend as a topic to be losing popularity?

Maybe traditional trend analysis is flawed and the collective knows it.

Word frequency history: “Trend”
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What if we could do better?

What would you do
if you really understood trends

and when they reversed?




Introduction

What is TrendCalculus?



TrendCalculus

is our new, multi-scale
trend reversal detection algorithm
for streamed numeric data

over all timeframes.

It's pretty fast: O(n)




What does output look like?

AAPL_Daily N=21_2008_ [2008-01-01/2013-11-05]
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What does output look like?

L
trend_calc [2000-01-03/2014-01-10]
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What does output look like?

L
trend_calc [2000-01-03/2014-01-10]
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partitions build, bottom up
into a hierarchical structure...
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Where does this fit?

Time Series Representations”
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* Author:

TrendCalculus: Eamonn Keogh

Professor

Is a multi-scale, bottom up, trend reversal detected, Piecewise Approximation Computer Sience & Engineering Department

University of California - Riverside

that produces a hierarchical trend partitioning. Riverside, CA 92521



TrendCalculus:

It enables

“Multiscale Trend Analysis”




Multiscale Trend
Analysis

What is MTA?



What does MTA offer?

the MTA paper is a good read:

If offers rich time series methods... Multiscale Trend Analysis

to better predict

Ilya Zaliapin }

to correlate timeseries Andrei Gabrielov  and

Vladimir Keilis-Borok*

to index and compress |
Revised: February 02, 2004

S

to do cross-scale retrieval of “motifs”
to build ‘episodic memory’ stores

to normalise signal extraction, reduce noise

[
to convert sub-symbolic data to rich symbolic data "' ".
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What are multi scale trends?

A time series is decomposed into local linear trends.

* these pictures are from the paper

Upward trend

Downward trend
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From the MTA paper....

a) MTD for Brownian walk b) The corresponding hierarchy of trends
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* these pictures are from the paper



The idea is to ignore noise

b) Reversals found on the scale of interest
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Build a tree of local trends

The trends are stacked in a hierarchy.

Like a b-tree, we index time series data into a shallow tree which is
isn’'t balanced per se, but partitions are interpretable and meaningful
(not necessarily stationary)

a) b) c)
‘ I‘? > 9(1)
< r; >l 7 » e; e,
r Ir;] E r 3 r r e’ e e’ e? e

* these pictures are from the paper



Trends are signed integers

b)
P] : partitions of X ; ; - :
I partitions of Y
P i | i
— + —
Compare: multiply signs
C
)I [1 I . [1 .
| : : | | : |
; I, i /, :
! ! ! !
| — - A — |
a I b 1 c a I h 1 c

Compare: ratio of overlapping portions

Trending Together? = a correlation measure.
Multiply the trend signs at time t.
If answer is +1 they are trending together...

* these pictures are from the paper



What does ByteSumo bring?

We created a Bottom Up algorithm, that detects Trend
Reversals, aka “Knots” at a Scale, based on a window, N.

Stacked, it creates multi-scale partitions over a stream of time
series data.

It’s fast, because we changed the definition of a Trend (?!)
Yes - We abandoned linear regressions...
Our definitioniis:

Rising = Higher Highs, Higher Lows

Falling = Lower Lows, Lower Highs




Let's see it in action!

Andre&s—MacBook-ﬁro:src'and}eﬁhorgans cat db_output.csv | wc -1

21499

Andrews-MacBook-Pro:src andrewmorgan$ time cat db_output.csv |
lua /Users/andrewmorgan/nix/TrendCalculus/MultiScale/src/tcalc

5.lua -F "," -0FS "," -p 1 -h -H -n 200
ts_id,date,value,info,pass,bardate

.FTSE, 1940-09-05,62.2,Bottom,1,1940-12-23
.FTSE, 1944-10-17,147.2,Top,1,1944-10-23
.FTSE,1944-11-20,135.5,Bottom,1,1945-06-13
.FTSE, 1945-07-09,149.2,Top, 1,1946-02-01
.FTSE, 1945-10-09,133.3,Bottom,1,1946-02-01
.FTSE,1947-03-17,177,Top,1,1947-05-14
.FTSE,1947-10-28,131.2,Bottom,1,1948-01-02
.FTSE, 1948-02-25,162.4,Top,1,1948-08-23
.FTSE,1949-12-29,125.7,Bottom,1,1950-07-24
.FTSE,1951-07-24,176.8,Top,1,1951-11-02
.FTSE,1952-07-31,129.8,Bottom,1,1953-04-03
.FTSE,1955-08-18,281.9,Top,1,1956-04-27
.FTSE,1956-12-28,203.4,Bottom,1,1957-02-01
.FTSE,1957-08-02,261.4,Top,1,1957-11-08
.FTSE,1958-03-24,194.4,Bottom,1,1958-08-15
.FTSE, 1960-09-16,433.7,Top,1,1960-12-02
.FTSE,1961-06-05,460.5,Top,1,1961-09-08
.FTSE,1961-01-03,369.5,Bottom,1,1961-09-08
.FTSE,1962-07-11,318.3,Bottom,1,1963-03-22
.FTSE, 1964-10-13,475.7,Top,1,1965-07-09
.FTSE, 1965-08-06,395.1,Bottom,1,1966-04-15
.FTSE, 1966-06-21,471.2,Top,1,1967-01-20
.FTSE,1966-11-11,357.9,Bottom,1,1967-01-20
.FTSE, 1968-09-12,657.2,Top,1,1969-05-09
.FTSE,1971-02-16,384.4,Bottom,1,1971-08-27
.FTSE,1972-05-03,684.5,Top,1,1972-06-02
.FTSE,1974-12-06,183.8,Bottom,1,1975-06-27
.FTSE,1976-04-02,529.9,Top,1,1976-04-02
.FTSE,1976-09-28,334.1,Bottom,1,1977-01-07
.FTSE,1977-08-05,691.6,Top,1,1977-10-14
.FTSE,1978-01-20,545.7,Bottom,1,1978-07-21
.FTSE,1979-03-21,703.4,Top, 1,1979-04-27
.FTSE,1979-10-04,511.6,Bottom,1,1980-02-01
.FTSE,1981-03-31,752.1,Top,1,1981-08-14
.FTSE,1981-08-27,576.1,Bottom,1,1982-05-21
.FTSE,1987-07-16,2443.3999,Top, 1,1987-10-02
.FTSE,1987-11-09,1565.2,Bottom,1,1988-07-08
.FTSE,1990-01-03,2463.7,Top,1,1990-01-19
.FTSE, 1990-09-28,1990.2,Bottom,1,1990-10-26
.FTSE, 1992-05-08,2725.7,Top,1,1992-05-08
.FTSE,1992-08-25,2281,Bottom,1,1993-02-12
.FTSE, 1994-02-02,3520.3,Top,1,1994-08-26

.FTSE,1994-12-12,2943.3999,Bottom,1,1995-06-02

.FTSE, 1998-04-06,6105.7998,Top,1,1998-06-26

.FTSE,1998-10-05,4648.7002,Bottom,1,1999-04-02

.FTSE,1999-12-30,6930.2002,Top, 1,2000-01-07
.FTSE,2003-03-12,3287,Bottom,1,2003-11-07
.FTSE, 2007-06-15,6732.3999,Top, 1,2007-09-07
.FTSE, 2009-03-03,3512.1,Bottom,1,2009-03-20
.FTSE,2011-02-08,6091.3,Top,1,2011-07-08
.FTSE,2011-10-04,4944.4,Bottom,1,2012-04-13

real oml12.822s
user 0m12.400s
sys omo.412s
Andrews-MacBook-Pro:src andrewmorgans$ [

Let’s try the FTSE 100, extended back to 1935 via the
FTSE 30 data.

Time Series length: 21499 records (daily closes)
This run uses window size of n=200 (market days)

The process in Lua creates lots of intermediate
calculations for each window size fromndownto 1...so
it should be slow....

Total run time is ~13 seconds on my mac.

Output is shown left: 51 major trend reversals found
that approximate the time series.

Alternatively, we could say we have “generalised the
time series” into 51 important change points.

S
o
but is how else might we be able to to speed it up? ‘”"ﬁ’

it's true luajit can speed this up... "'




Let's see it in action!

Let’s try another way. Stacking the calculations: i.e. Pipe output back through the algo again x3.

Andrews-MacBook-Pro:src andrewmorgan$ cat test.sh

# for fast multiscale reversal finding, I run it on an n=5, and stream output back through the algo 3 more times in a stack.
# this will create a B-Tree depth of max 4.

# will it run faster?

p=5
z=5

cat db_output.csv | lua /Users/andrewmorgan/nix/TrendCalculus/MultiScale/src/tcalc5.lua -F "," -OFS "," -p 1 -h -H -n $z \
| tee reversalsl.csv | 1lua /Users/andrewmorgan/nix/TrendCalculus/MultiScale/src/tcalc5.lua -F "," -OFS "," -p 2 =h =H -n $p \
| tee reversals2.csv | lua /Users/andrewmorgan/nix/TrendCalculus/MultiScale/src/tcalc5.lua -F "," -OFS "," =p 3 =h =H -n $p \
| tee reversals3.csv | lua /Users/andrewmorgan/nix/TrendCalculus/MultiScale/src/tcalc5.lua -F "," -OFS "," -p 4 -h -H -n $p > reversalsé4.csv

Andrews-MacBook-Pro:src andrewmorgan$ time . test.sh

There is practically a magnitude improvement
in performance when stacking.

&3 oml.688s
user oml.687s
Sys @m@.155s
adrews-MacBook-Pro.efc andrewmorgan$ ls reverx.csv

reversats.csv reversalsl.csv reversals2.csv reversals3.csv reversals4.csv
Andrews-MacBook-Pro:src andrewmorgan$ time . test.sh

With a setting of N=5, | just processed the stack
of 4 runs in less than 2 seconds using straight
organ statt T @ 9 san 1431 reversals.csv lua on my mac for 21,499 input records.

user Oml.377s
Sys omo.142s
Andrews-MacBook-Proz;

- andrewmorgan staff 0 9

-rw-r--r-- 1 andrewmorgan staff 35 9 Jan 15:35 reversals4.csv

-rw-r--r-- 1 andrewmorgan staff 1210 9 Jan 15:35 reversals3.csv

-rw-r--r-- 1 andrewmorgan staff 10537 9 Jan 15:35 reversals2.csv ,

-rw-r--r-=— 1 andrewmorgan staff 87605 9 Jan 15:35 reversalsl.csv ~

Andrews-MacBook-Pro:src andrewmorgan$ wc -1 reversalx.csv that S 1Ok Streamed records per Second

@ reversals.csv
2080 reversalsl.csv
250 reversals2.csv

20 reversals3.csv With luajit it will drop further! The partitionsin

1 reversals4.csv
2360 total the trend tree we calculated are:
Andrews-MacBook-Pro:src andrewmorgan$ wc -1 db_output.csv
21499 db_output.csv

Aqdrews—Macl?ookTPro:src andrewmorgan$ head —§ db_output.csv '.'
[FTSE . 19351113, 1250, raws 0y, L oree level4 =0 trend reversals ’ @
.FTSE,1935-11-14,125.7,raw,@,, ‘
.FTSE,1935-11-15,125.4, raw, 9, , level 3 =28 trend reversals '
.FTSE,1935-11-16,125.4, raw,0,, "
‘Andrews-MacBook—Pro:src andrewmorgan$ I |eve| 2 = 249 trend reversals Il‘l\”

level 1 =2,079 trendreversals.



Let's see it in action!

Here is the last 14 years of the stacked output. The 3 levels of partitions are seen nested:
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Let's see it in action!

Here is the last 14 years of the stacked output. The 3 levels of partitions are seen nested:
= - it Format Workspace Packages& Data Mi u —
xtimeseries
7000 | 25t 6331.8 - Ao
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P\
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1" ‘I‘Ilr
\
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Let's see it in action!

Here is the last 14 years of the stacked output. The 3 levels of partitions are seen nested:
l LA IAUE RS G L AERE (e SRR B e Ud —
xtimeseries [2000-01-03/2014-12-16]
7000 - 7000
ast 6331.8 [level 3] @G
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Let's see it in action!

Zoom out. Here is from 1945 to Present. We see the 28 “level 3" partitions as red knots.
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Let's see it in action!

Zoom in. Here is 2013. Here we can see some of the 2,079 fine grain “level 1” reversals up close:
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Let's see it in action!

Zoom in. Here is 2013. Here we can see some of the 2,079 fine grain “level 1” reversals up close:
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Let's see it in action!

Zoom in. Here is 2013. Here we can see some of the 2,079 fine grain “level 1” reversals up close:
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Let's see it in action!

Zoom in. Here is 2013. Here we can see some of the 2,079 fine grain “level 1” reversals up close:
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New Directions for
Trend Calculus

Our researchis
uncovering whole new
avenues of study.



A Rolling Trend score?

This involves moving away from fixed windows of N and to
rolling arrays for all timeframes to N.

The information revealed is not trend reversals, but the
underlying data used in their calculation.

| will output these internal arrays to feed deep learning
algorithms as a form of “trend feature generator”.

For display, | turn values into symbols, and we can see rich
patterns emerging from the trends across all scales.

Quants who reviewed this said: “ah, it shows the relationship of the price to the Pivot Points”
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Rolling Trends - all timeframes
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Here | present the trend score as a symbol
for each timeframe to a max N to build a
“multi scale trend map”
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Rolling Trends - all timeframes
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What are we seeing?

asmall N is a short channel

$SPX (S&P 500 Large Cap Index) INDX
30-Aug-2011 10:58am
MRSI(S) 50,27

@ StockCharts.com
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bigger N is a long channel

When price above a channel, trend is up.
When below a channel, it's down.

When the price is in a channel
the trend is neutral.

here we see two timeframes.
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Trend Maps of all timeframes.

The next steps are to use all these rich inputs to
see if we can make long range predictions...

.. by for instance feeding deep learning

algorithms with all these trends to predict future

trend reversals.

It means I'll use TrendCalculus to generate
interesting trend features.

Lots of potential for further work.
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> The identified trend reversals, as outer-join back to time series
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Prediction

MTA was created by
people predicting
earthquakes



Predicting Earthquakes?!?

The 11 April 2012, M8.6 and M8.2 earthquakes OFF THE WEST COAST OF NORTHERN SUMATRA did confirm an alarm TIP reported in
January, in the regular 2010a Update of the M8-MSc predictions of the Global Test of M8 (Healy et al. 1992; password protected URL

http://www .mitp ru/en/restricted global/2012a/2012am8.html; yellow outline in the attached figure). The earthquake epicenters missed the reduced
area of alarm (red outline) diagnosed in the second approximation due to inapplicability of the MSc algorithm outside bulk distribution of seismic
activity. Nevertheless, it appears remarkable that the reduced area is about the same as the area of the 11 April 2012 first-day aftershocks located at
about the same latitudes.

The 11 April 2012 great earthquakes have ruptured the conjugate faults, about 300 and 500 km each in the oceanic lithosphere of Indo-Australian
plate. Both are strike-slip intra-oceanic-plate events with epicenters in an area of sparse seismicity, some 100 km and 200 km to the southwest of
the major seismic belt of the subduction zone next to the complex junction of India, Australia, Sunda, and Burma plates. These events continue a
series that can be attributed to the 26 December 2004, M9.1 Sumatra-Andaman mega-thrust, followed by the 28 March 2005, M8.6 great Nias
earthquake. In course the Global Test of M8 a segment of the subduction zone from Burma to Southern Sumatra was recognized as capable of °

producing magnitude M8.0+ event starting from July 2005-January 2006, which prediction was already confirmed with a pair of the great 12 rea o P re I Cte a rt q u a e
September 2007, M8.5 SOUTHERN SUMATRA and M8.1 KEPULAUAN MENTAWAI REGION, INDONESIA earthquakes

(http://www .mitp ru/en/restricted global/2007b/m8tSconfirmed.html).

(Note: The M8 algorithm provides prediction in the first approximation, and the algorithm MSc, if the data permit, narrows down the area covered
by alarm. Both apply to the null approximation delivered by identifying earthquake-prone zones, e.g. "active fault zones", "D-intersections or
knots", etc.) o

Actual Earthquake

2012/04/11 08
MAGNITUDE 8.6 (GS) (big star)

2012/04/11 10:43:09 UTC F f P d :
M/AGNITUDE 8.2 (GS)\(star) Ocus o re ICtlon
&\ their first-day aftersholcks (white dots)

on top the area of M8 LIP (yellow)

and_ its reduction by, Ms*e\(roA',
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Predicting Earthquakes?!?
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The 11 April 2012, M8.6 and M8.2 earthquakes OFF THE WEST COAST OF NORTHERN SUMATRA did confirm an alarm TIP reported in
January, in the regular 2010a Update of the M8-MSc predictions of the Global Test of M8 (Healy et al. 1992; password protected URL

http://www .mitp ru/en/restricted global/2012a/2012am8.html; yellow outline in the attached figure). The earthquake epicenters missed the reduced
area of alarm (red outline) diagnosed in the second approximation due to inapplicability of the MSc algorithm outside bulk distribution of seismic
activity. Nevertheless, it appears remarkable that the reduced area is about the same as the area of the 11 April 2012 first-day aftershocks located at
about the same latitudes.

The 11 April 2012 great earthquakes have ruptured the conjugate faults, about 300 and 500 km each in the oceanic lithosphere of Indo-Australian
plate. Both are strike-slip intra-oceanic-plate events with epicenters in an area of sparse seismicity, some 100 km and 200 km to the southwest of
the major seismic belt of the subduction zone next to the complex junction of India, Australia, Sunda, and Burma plates. These events continue a
series that can be attributed to the 26 December 2004, M9.1 Sumatra-Andaman mega-thrust, followed by the 28 March 2005, M8.6 great Nias
earthquake. In course the Global Test of M8 a segment of the subduction zone from Burma to Southern Sumatra was recognized as capable of
producing magnitude M8.0+ event starting from July 2005-January 2006, which prediction was already confirmed with a pair of the great 12
September 2007, M8.5 SOUTHERN SUMATRA and M8.1 KEPULAUAN MENTAWAI REGION, INDONESIA earthquakes
(http://www .mitp ru/en/restricted global/2007b/m8tSconfirmed.html).

(Note: The M8 algorithm provides prediction in the first approximation, and the algorithm MSc, if the data permit, narrows down the area covered
by alarm. Both apply to the null approximation delivered by identifying earthquake-prone zones, e.g. "active fault zones", "D-intersections or

knots", etc.) o
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| think they did it by

finding unusual
divergences
“(Un)Correlations”
between
trends in different
geophysical measures
and these were found
to be precursors
to major earthquakes...

see here for detail:

Temporal (Un)correlations Between
Coda Q and Seismicity: Multiscale Trend Analysis

http://link.springer.com/article/10.1007%2Fs00024-004-2643-x
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THANK YOU
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Attribution

Salomé Areias: http://salomeareias.com/what-is-a-trend/

Eurostat: http://epp.eurostat.ec.europa.eu/statistics explained/index.php/Glossary:Trend cycle

MultiScale Trend Analysis:

|. Zaliapin, A. Gabrielov, V. Keilis-Borok. Multiscale trend analysis for time series.
Fractals,v.12, p.275-292, 2004.
http.//www.math.purdue.edu/~agabriel/mta.pdf

Eamonn Keogh:
Time Series Representations - a slide found in the tutorials found here:
http://www.cs.ucr.edu/~eamonn/tutorials.html
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