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Trends?!

Data science seems so focused on the micro scale:  

 deeper granularity 

 higher frequency… 

!



Trends?!

My focus is broad patterns; big flock behaviours, and my 
objective is long range predictions. 

Trends are a natural way to think, explain, and forecast. 

Yet we lack tools to understand Trends, scientifically. 

TrendCalculus is my unfinished research to that end. 

!



What’s a trend?

!

“A Trend is defined by a shift in behaviour or mentality that 
influences a significant amount of people.” - Salomé Areias 

!

“A Trend is the slow variation over a longer period of time, 
usually several years, generally associated with the structural 
causes affecting the phenomenon being measured.” - Eurostat 

!



400+ years of trend discussion

What do you see? 
Perhaps a shift in behaviour or mentality?  

Maybe a drift in language use? 
How do we quantify and study the trend? 

- Wolfram Alpha

?

?“Trend”



400+ years of trend discussion

- Wolfram Alpha

?

?“Trend”

What might cause Trend as a topic to be losing popularity? 

!



400+ years of trend discussion

- Wolfram Alpha

?

?“Trend”

What might cause Trend as a topic to be losing popularity?  

Maybe traditional trend analysis is flawed and the collective knows it.  



What if we could do better?

!

What would you do 

if you really understood trends 

and when they reversed?



Introduction

What is TrendCalculus?



TrendCalculus

is our new, multi-scale 

trend reversal detection algorithm  

for streamed numeric data 

over all timeframes. 

!

It’s pretty fast: O(n)



What does output look like?
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What does output look like?
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What does output look like?
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Some approximations of 
time series…

..note that all except SYM ..note that all except SYM 
are real valued…

Time Series RepresentationsTime Series Representations
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• Create an approximation of the data, which will fit in main 
memory, yet retains the essential features of interest

• Approximately solve the problem at hand in main memory

• Make (hopefully very few) accesses to the original data on disk 
to confirm the solution obtained in Step 2, or to modify the 
solution so it agrees with the solution we would have obtained on 
the original data

The Generic Data Mining Algorithm (revisited) The Generic Data Mining Algorithm (revisited) 

This only works if the 
approximation allows 

lower bounding

• Lower bounding means the estimated distance in the reduced space is always less 
than or equal to the distance in the original space.

What is Lower Bounding?What is Lower Bounding?
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Raw Data

Approximation 
or 

“Representation”

TrendCalculus: 
Is a multi-scale, bottom up, trend reversal detected, Piecewise Approximation 
that produces a hierarchical trend partitioning.

Piecewise Trend 
Partitioning

Where does this fit?
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TrendCalculus: 
It enables  

“Multiscale Trend Analysis” 



Multiscale Trend 
Analysis

What is MTA?



What does MTA offer?

If offers rich time series methods...  

 to better predict 

 to correlate timeseries 

 to index and compress  

   to do cross-scale retrieval of “motifs” 

 to build ‘episodic memory’ stores  

 to normalise signal extraction, reduce noise 

 to convert sub-symbolic data to rich symbolic data
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the MTA paper is a good read:



What are multi scale trends?

A time series is decomposed into local linear trends. 

Multiscale Trend Analysis 32
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Figure 1: Scheme of the Multiscale Trend Decomposition. a) At zero step X(t) is ap-

proximated by its global linear trend L0(t). b) Detrended series X1(t) = X(t) − L0(t) is

approximated by the piecewise linear function L1(t), the whole analysis is then repeated

at each of subintervals [t1i , t1i+1]. c) Resulting hierarchy of trends. See Sect. 2 for details.

* these pictures are from the paper



From the MTA paper….

Multiscale Trend Analysis 34
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Figure 3: Decomposition of a Fractional Brownian walk with Hurst exponent H = 0.7.

a) Piecewise linear approximations at levels l = 0, 1, 2, 10. b) Corresponding hierarchical

tree.

* these pictures are from the paper



The idea is to ignore noise

Multiscale Trend Analysis 35
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Figure 4: Decomposition of the sum of three sinusoids, X(t) = sin(5πt) + 1
5 sin(60πt) +

1
10 sin(200πt). a) X(t) on the background of three levels from its decomposition. b) Piece-

wise linear approximation corresponding to the top level of the decomposition shown in

panel a). c) Fragment corresponding to the middle level of a). d) Fragment corresponding

to the bottom level of a).

Reversals found on the scale of interest

* these pictures are from the paper



Build a tree of local trends

The trends are stacked in a hierarchy. 

Like a b-tree, we index time series data into a shallow tree which is 
isn’t balanced per se, but partitions are interpretable and meaningful 
(not necessarily stationary)

Multiscale Trend Analysis 43
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Figure 12: Three levels of detail in MTA description of a time series. a) Topological.

b) r-metric, based on the interval partition. c) e-metric, based on local linear fit of the

series. See details in Sect. 4.

* these pictures are from the paper



Trends are signed integers

Multiscale Trend Analysis 45
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Figure 14: Signed partition corresponding to a piecewise linear approximation (panel

a), union of signed partitions (panel b), and triplet (a, b, c) for an interval of a union of

partitions. see Sect. 5.2.

Trending Together? = a correlation measure. 
Multiply the trend signs at time t. 

If answer is +1 they are trending together…

partitions of X

partitions of Y

Compare: multiply signs

Compare: ratio of overlapping portions

* these pictures are from the paper



What does ByteSumo bring?
We created a Bottom Up algorithm, that detects Trend 
Reversals, aka “Knots”, at a Scale, based on a window, N.  

Stacked, it creates multi-scale partitions over a stream of time 
series data. 

It’s fast, because we changed the definition of a Trend (?!) 

Yes - We abandoned linear regressions… 

Our definition is: 

 Rising = Higher Highs, Higher Lows 

 Falling = Lower Lows, Lower Highs



Let’s see it in action!
Let’s try the FTSE 100, extended back to 1935 via the 
FTSE 30 data. 

Time Series length: 21499 records (daily closes) 

This run uses window size of n=200 (market days) 

The process in Lua creates lots of intermediate 
calculations for each window size from n down to 1 … so 
it should be slow…. 

Total run time is ~13 seconds on my mac.  

Output is shown left: 51 major trend reversals found 
that approximate the time series.  

Alternatively, we could say we have “generalised the 
time series” into 51 important change points. 

it’s true luajit can speed this up… 

but is how else might we be able to to speed it up? 



Let’s see it in action!
Let’s try another way. Stacking the calculations: i.e. Pipe output back through the algo again x3. 

!

!

!

!

!

There is practically a magnitude improvement 
in performance when stacking. 

With a setting of N=5, I just processed the stack 
of 4 runs in less than 2 seconds using straight 
lua on my mac for 21,499 input records.  

that’s ~10k streamed records per second. 

With luajit it will drop further! The partitions in 
the trend tree we calculated are: 

level 4  = 0   trend reversals  
level 3 = 28   trend reversals 
level 2 = 249 trend reversals 
level 1 = 2,079 trend reversals. 



Let’s see it in action!

level 2

[level 3]

level 1

Here is the last 14 years of the stacked output. The 3 levels of partitions are seen nested:

[level 3]

[level 3]



Let’s see it in action!

level 2

[level 3]

level 1

[level 3]

[level 3]

Here is the last 14 years of the stacked output. The 3 levels of partitions are seen nested:



Let’s see it in action!

level 2

[level 3]

level 1

[level 3]

[level 3]

Here is the last 14 years of the stacked output. The 3 levels of partitions are seen nested:



Let’s see it in action!

level 2

[level 3]

level 1

Zoom out. Here is from 1945 to Present. We see the 28 “level 3” partitions as red knots. 

[level 3]

level 2



Let’s see it in action!
Zoom in. Here is 2013. Here we can see some of the 2,079 fine grain “level 1” reversals up close: 

level 1



Let’s see it in action!
Zoom in. Here is 2013. Here we can see some of the 2,079 fine grain “level 1” reversals up close: 



Let’s see it in action!
Zoom in. Here is 2013. Here we can see some of the 2,079 fine grain “level 1” reversals up close: 

!
!
While we didn’t set 
out to generate 
piecewise linear 
regressions,  
(we abandoned 
regression 
remember) 
you can see the 
results are often 
not bad if we judge 
it on that basis.  
!



Let’s see it in action!
Zoom in. Here is 2013. Here we can see some of the 2,079 fine grain “level 1” reversals up close: 

!
!
!
!
!
All these partitions 
were created in 
that 2 second run, 
~10k data points 
per second. 
!
!
!
!
!
!



New Directions for 
Trend Calculus
Our research is 
uncovering whole new 
avenues of study.



A Rolling Trend score?

This involves moving away from fixed windows of N and to 
rolling arrays for all timeframes to N. 

The information revealed is not trend reversals, but the 
underlying data used in their calculation. 

I will output these internal arrays to feed deep learning 
algorithms as a form of “trend feature generator”. 

For display, I turn values into symbols, and we can see rich 
patterns emerging from the trends across all scales.  

Quants who reviewed this said: “ah, it shows the relationship of the price to the Pivot Points”



Rolling Trends - all timeframes

Bullish

Bearish

neutral 
bearish

neutral 
bullish

$DJI 
closes

10 40timeframe N : 80 120 160 200 240 280 320 360

Here I present the trend score as a symbol 
for each timeframe to a max N to build a 

“multi scale trend map”



Rolling Trends - all timeframes

The columns are symbols  
representing  

the value of the  
rolling channels I calculate  
in my array for a value n. 

A timeframe becomes vertical stripes 
on the “trend map” from 1 .. n



What are we seeing?

At the latest price, the instantaneous  trend = 0 which is neutral, but within a positive longer term trend and a negative 
shorter term trend. If  the  price  drops  below  the  Pink  longer  term  trend’s  Lower  channel  the  longer  term  Up-Trend is 

finished, and we can search and discover the highest high since the low at 1135.91 to  determine  the  wave’s  terminus  
or wave end-point. Currently it could be 1210.28, but until we get a confirmation, it could still go higher.

Longer term 
Inflection points

shorter term 
Inflection points

If you are curious, in fact the price stayed 
above the pink lower trend channel line, and 

continued upwards. Our first indication would 
be the breakout above the short term channel.
These dips are called pull-backs in english, and 

are good buying opportunities.

This is a 10 minute intraday bar chart for $SPX that updates in real time. I have added in my Trend Channel lines which are re-calculated  over  the  previous  period’s  high’s  and  
lows for the moving window each time the price updates.  I  calculate  these  using  a  short  cut  which  is  to  lag  the  “Price  Channel”  by  (n-1) steps which here is in units of 10-

minutes. I calculate a n=3 (30 min) price channel for short term trends, and a n=18 (180min) price channel for longer term trends. Note that these can be reset to any value of 
N you want. If you look at the chart settings near the pink arrow, you can see the definition I used which you can try yourself. Regarding the chart, CHAN(18,17) says Calculate 

a rolling 18*10min=180 minute rolling price channel, and lag it (so it looks like it moves into the future) by n-1=17 steps so  that  it  is  equal  to  exactly  the  previous  period’s  
values. This  trick  also  has  the  effect  of  “projecting”  the  previous  trend  values  into  the  future, so we can monitor the current price against the future trend boundary.

a small N is a short channel

bigger N is a long channel

When price above a channel, trend is up. 
When below a channel, it’s down. 

!
When the price is in a channel 

the trend is neutral. 
!

here we see two timeframes. 



Trend Maps of all timeframes.
The next steps are to use all these rich inputs to 
see if we can make long range predictions… 
!
.. by for instance feeding deep learning 
algorithms with all these trends to predict future 
trend reversals.  
!
It means I’ll use TrendCalculus to generate 
interesting trend features. 
!
Lots of potential for further work. 
!
!

#   Downtrend

*   Uptrend

:    Neutral - bearish
.    Neutral - Bullish

The identified trend reversals, as outer-join back to time series



Prediction
MTA was created by 
people predicting 
earthquakes



Predicting Earthquakes?!?

The 11 April 2012, M8.6 and M8.2 earthquakes OFF THE WEST COAST OF NORTHERN SUMATRA did confirm an alarm TIP reported in
January, in the regular 2010a Update of the M8-MSc predictions of the Global Test of M8 (Healy et al. 1992; password protected URL
http://www.mitp.ru/en/restricted_global/2012a/2012am8.html; yellow outline in the attached figure). The earthquake epicenters missed the reduced
area of alarm (red outline) diagnosed in the second approximation due to inapplicability of the MSc algorithm outside bulk distribution of seismic
activity. Nevertheless, it appears remarkable that the reduced area is about the same as the area of the 11 April 2012 first-day aftershocks located at
about the same latitudes.

The 11 April 2012 great earthquakes have ruptured the conjugate faults, about 300 and 500 km each in the oceanic lithosphere of Indo-Australian
plate. Both are strike-slip intra-oceanic-plate events with epicenters in an area of sparse seismicity, some 100 km and 200 km to the southwest of
the major seismic belt of the subduction zone next to the complex junction of India, Australia, Sunda, and Burma plates. These events continue a
series that can be attributed to the 26 December 2004, M9.1 Sumatra-Andaman mega-thrust, followed by the 28 March 2005, M8.6 great Nias
earthquake. In course the Global Test of M8 a segment of the subduction zone from Burma to Southern Sumatra was recognized as capable of
producing magnitude M8.0+ event starting from July 2005-January 2006, which prediction was already confirmed with a pair of the great 12
September 2007, M8.5 SOUTHERN SUMATRA and M8.1 KEPULAUAN MENTAWAI REGION, INDONESIA earthquakes
(http://www.mitp.ru/en/restricted_global/2007b/m8t5confirmed.html).

(Note: The M8 algorithm provides prediction in the first approximation, and the algorithm MSc, if the data permit, narrows down the area covered
by alarm. Both apply to the null approximation delivered by identifying earthquake-prone zones, e.g. "active fault zones", "D-intersections or
knots", etc.)

Back to "List of predictions"

 

Focus of Prediction

Actual Earthquake

http://www.mitp.ru/en/index.html

Area of predicted Earthquake

http://www.mitp.ru/en/index.html
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http://www.mitp.ru/en/index.html

I think they did it by 
finding unusual  
divergences  

“(Un)Correlations” 
between  

trends in different 
geophysical measures 
and these were found  

to be precursors  
to major earthquakes… 

!
see here for detail: !!

Temporal (Un)correlations Between  
Coda Q and Seismicity: Multiscale Trend Analysis !
http://link.springer.com/article/10.1007%2Fs00024-004-2643-x

http://www.mitp.ru/en/index.html
http://link.springer.com/article/10.1007%2Fs00024-004-2643-x


THANK YOU
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  I. Zaliapin, A. Gabrielov, V. Keilis-Borok. Multiscale trend analysis for time series.                                 
  Fractals, v.12, p.275-292, 2004.                                 
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